Domain and Asymptotes of Rational Functions

Equations: (1) $f(x)=\frac{4 x^{2}+3 x+2}{4 x-1}$
(2) $f(x)=\frac{2 x}{x-2}$
(3) $f(x)=\frac{2 x}{\sqrt{x-5}}$

Note: The above numbered equations will be referenced below using the same notation e.g. (1) Domain depends on numerator and denominator
We begin with the real numbers interval $(-\infty, \infty)$ then look for numbers or intervals to exclude:

1) Numbers that cause only the denominator to be zero
2) Numbers that cause an even root to be negative(whether its on the denominator or numerator)
3) Numbers that cause a root of the denominator to be zero

Example: (3) Look at the denominator: $\sqrt{x-5}=0$ when $x=5$. Observe that $x<5$ causes $(x-5)<0$.
Values under the even root must be positive therefore domain $=(5, \infty)$

Vertical, Horizontal, and Oblique Asymptotes

Vertical Asymptote: (1) Set the denominator equal to 0 . You get the following:
$f(x)=4 x-1=0 \Leftrightarrow 4 x=1 \Leftrightarrow x=\frac{1}{4}$
By plugging in $\mathrm{x}=\frac{1}{4}$ for the numerator, you see that the numerator does not equal zero.
The above step is needed to ensure that $\mathrm{x}=\frac{1}{4}$ is not a removable discontinuity.
Therefore, $\mathrm{x}=\frac{1}{4}$ is a vertical asymptote.

Horizontal Asymptote: The limit method may be used to find all horizontal asymptotes. (1)The degree of the numerator is greater than the degree of the denominator. There is no horizontal asymptote.
(2) Taking the limit as the x of numerator and denominator head to positive and negative infinity, we get that $\mathrm{y}=2$.

The following function has a vertical and oblique(slanted) asymptote: $f(x)=\frac{8 x^{2}+6 x+4}{8 x-2}$

Oblique Asymptote: (1) Divide the numerator by the denominator if the highest degree of the numerator is greater than the highest degree of the denominator.
$f(x)=\frac{8 x^{2}+6 x+4}{8 x-2}=\frac{2\left(4 x^{2}+3 x+2\right)}{2(4 x-1)}$
Long division of the above equation is shown below.
Division stops when the remainder's highest degree is less than the divisor. In this case, $8 \mathrm{x}-2$ is the divisor. The oblique asymptote is $\mathrm{y}=\mathrm{x}+1$.

The following function has a vertical and horizontal asymptote: $f(x)=\frac{2 x}{x-2}$

